AFNII InstaCorr

[Also works in [UMA]]

- On-the-fly
 Instantaneous
 Correlation map of resting state data with interactively selected seed voxel
- Setup phase: prepares data for correlations (several-to-10+ seconds)
- Correlation phase:
 you select seed voxel,
 correlation map
 appears by magic

InstaCorr: Outline of 2 Phases

Setup phase:

- Masking: user-selected or Automask
- Bandpass and other filtering of voxel time series
- Blurring inside mask = the slowest part

Correlation phase:

- Correlate selected seed voxel time series with all other prepared voxel time series
- Make new dataset, if needed, to store results
- Save seed time series for graphing
- Redisplay color overlay
- Optional: compute FDR curve for correlations
 - Calculation is slow, so FDR is not turned on by default

InstaCorr: Setup

 Open Define Overlay, choose InstaCorr from menu in top right corner

InstaCorr: Setup

 Open Define Overlay, choose InstaCorr from menu in top right corner

Then press Setup ICorr button to get control panel

InstaCorr: Setup

- Mostly self-explanatory (I hope) cf. Help
- Global Orts = extra time series to be projected out of dataset before correlation
 - All columns in selected 1D file
 - e.g., movement parameters
 - The first Ignore rows (time points) will be skipped
- When you're ready, press one of the **Setup** buttons

InstaCorr: The Fun Part

- In image viewer, set crosshairs to desired seed voxel
- → Right-click popup menu → InstaCorr Set
 - Creates new dataset A ICOR for Overlay
 - Shortcut: Shift+Ctrl+Left-click sets new crosshair location, then does InstaCorr Set
 - Can also hold down <u>Shift+Ctrl+Left-click</u> and drag seed around
- InstaCorr SeedJump jumps focus to current seed

InstaCorr: Effects of Blurring

- Is this a pure vascular/cardiac effect being progressively smeared? Or real neural correlations seen via BOLD? Or some of both? Venograms?
 - Dataset was RETROICOR-ized; mask is whole brain

InstaCorr: Effects of Blurring

- Similar calculations, but with FreeSurfer-generated gray matter mask instead of Automask from EPI data
 - Blurring is done only inside the mask (3dBlurInMask)
 Using a discrete PDE-based iterative approach

Group InstaCorr

• If you have a robust enough system (multiple CPUs, several gigabytes of RAM), you can explore the *group* analysis of resting state seed-based correlations

• Setup Phase:

- Unlike individual InstaCorr, the (slow) setup is done outside the AFNI GUI via command line programs
- Step 1: transform all time series datasets to standard space = @auto_tlrc and adwarp
- Step 2: filter and blur all time series dataset =
 3dBandpass
- Step 3: collect groups of time series datasets into one big file = 3dSetupGroupInCorr
- Interactive Phase: point-and-click to set seed voxel

3dGroupInCorr: Interactive Server

Start server program (2-sample t-test here):

```
3dGroupInCorr -setA AAA.grpincorr.niml \
-setB BBB.grpincorr.niml
```

- Startup takes a little while, as all data must be read into RAM (perhaps several Gbytes)
- After data is read, connects to AFNI using a TCP/IP socket
- Server will use multiple CPUs if compiled with OpenMP (currently on Mac OS X 10.5 and 10.6, and one Linux version)
- In a separate terminal window, start AFNI:

```
afni -niml ~/abin/MNI_avg152T1+tlrc.HEAD
```

- o Then open the <u>Define Overlay</u> control panel
- o Select GrpInCorr from the Clusters menu

3dGroupInCorr: Interactive Results

- Use same buttons as individual subject
 InstaCorr to set seed
- Use Setup GICor panel to set the few options available interactively
 - SeedRad = extra smoothing radius for seed voxel time series (flat average)
 - Cluster = min number of voxels to keep above thresh

3dGroupInCorr: Lots of Computing

- Extracts seed time series from each input dataset;
 correlates it with all voxel time series in that dataset
 - Group analysis: t-test between correlation datasets
- 1-sample t-test (-setA only) gives 2 sub-bricks:
 - mean of tanh⁻¹(correlation with seed)
 - Z-score of t-statistic of this mean
- 2-sample test (-setA and -setB) gives 6 sub-bricks:
 - difference of means (A-B) of tanh⁻¹(correlation)
 - Z-score of t-statistic of this difference
 - Pooled or unpooled variance, or paired t-test (your option)
 - Plus 1-sample results for -setA and -setB separately
 - o View these in AFNI [B] and [C] controllers, to see it all!

Group InstaCorr: Final Notes

- Time series datasets can have different lengths
 - But all must have the same spatial grid and use the same mask!
- Fun Stuff: volume render results with DynaDraw
- Sometimes AFNI drops the shared memory connection to 3dGroupInCorr
 - Due to unknown bugs somewhere in AFNI
 - Program tries to reconnect when this happens
 - If this gets bad, use the -NOshm option to
 3dGroupInCorr to force it to use TCP/IP only
 - Slower data transfer, but more reliable
- Brand new software = still rough around the edges
 - ⇒ need *constructive* feedback

Group InstaCorr: Finalest Notes

- Shift+Ctrl+Click+Drag method for dynamically setting the seed voxel also works with Group InstaCorr
 - But speed of interaction can be slow
- Can now [May 2010] include subject-level covariates (e.g., IQ, age) in the analysis at the group step
 - To regress them out (nuisance variables), and/or to test the slope of tanh⁻¹(correlation) vs. covariate
- Can now [Jan 2011] run in batch mode
- Further ideas:
 - Granger-ize: correlate with lag-0 and lag-1 of seed and test Granger causality
 - Allow user to set other seeds to be "partialed out" of the analysis